View Single Post
Staro 30.04.2007., 12:12   #35
Darth Vader
Dark side Moderator
Moj komp
 
Darth Vader's Avatar
 
Datum registracije: Feb 2005
Lokacija: Osijek
Postovi: 1,633
The Role of Cable and Connection Quality

Cable quality, in general, should not be a significant factor in the DVI/HDMI versus Component Video comparison, as long as the cables in question are of high quality. There are, however, ways in which cable quality issues can come into play.

Analog component video is an extremely robust signal type; we have had our customers run analog component, without any need for boosters, relays or other special equipment, up to 200 feet without any signal quality issues at all. However, at long lengths, cable quality can be a consideration--in particular, impedance needs to be strictly controlled to a tight tolerance (ideally, 75 +/- 1.5 ohms) to prevent problems with signal reflection which can cause ghosting or ringing.

DVI and HDMI, unfortunately, are not so robust. The problem here is the same as the virtue of analog component: tight control over impedance. When the professional video industry went to digital signals, it settled upon a standard--SDI, serial digital video--which was designed to be run in coaxial cables, where impedance can be controlled very tightly, and consequently, uncompressed, full-blown HD signals can be run hundreds of feet with no loss of information in SDI. For reasons known only to the designers of the DVI and HDMI standards, this very sound design principle was ignored; instead of coaxial cable, the DVI and HDMI signals are run balanced, through twisted-pair cable. The best twisted pair cables control impedance to about +/- 10%. When a digital signal is run through a cable, the edges of the bits (represented by sudden transitions in voltage) round off, and the rounding increases dramatically with distance. Meanwhile, poor control over impedance results in signal reflections--portions of the signal bounce off of the display end of the line, propagate back down the cable, and return, interfering with later information in the same bitstream. At some point, the data become unrecoverable, and with no error correction available, there's no way to restore the lost information.

DVI and HDMI connections, for this reason, are subject to the "digital cliff" phenomenon. Up to some length, a DVI or HDMI cable will perform just fine; the rounding and reflections will not compromise the ability of the display device to reconstruct the original bitstream, and no information will be lost. As we make the cable longer and longer, the difficulty of reconstructing the bitstream increases. At some point, unrecoverable bit errors start to occur; these are colloquially described in the home theater community as "sparklies," because the bit errors manifest themselves as pixel dropouts which make the image sparkle. If we make the cable just a bit longer, so much information is lost that the display becomes unable to reconstitute enough information to even render an image; the bitstream has fallen off the digital cliff, so called because of the abruptness of the failure. A cable design that works perfectly at 20 feet may get "sparkly" at 25, and stop working entirely at 30.

In practice, it's very hard to say when a DVI or HDMI signal will fail. We have found well-made DVI and HDMI cables to be quite reliable up to 50 feet. But because the ability to reconstitute the bitstream varies depending on the quality of the circuitry in the source and display devices, it's not uncommon for a cable to work fine at 30, 40, or 50 feet on one source/display combination, and not work at all on another.
Darth Vader je offline   Reply With Quote